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Automatically computed rating scales from MRI for patients with cognitive disorders 

Abstract 

Objectives. To study whether visual MRI rating scales used in diagnostics of cognitive disorders 

can be estimated computationally and to compare the visual rating scales with their computed 

counterparts in differential diagnostics.   

Methods. A set of volumetry and voxel-based morphometry imaging biomarkers was extracted 

from T1-weighted and FLAIR images. A regression model was developed for estimating visual 

rating scale values from a combination of imaging biomarkers. We studied three visual rating 

scales: medial temporal lobe atrophy (MTA), global cortical atrophy (GCA) and white matter 

hyperintensities (WMHs) measured by the Fazekas scale. Images and visual ratings from the 

Amsterdam Dementia Cohort (ADC) (N=513) were used to develop the models and cross validate 

them. The PredictND (N=672) and ADNI (N=752) cohorts were used for independent validation to 

test generalizability.  

Results. The correlation coefficients between visual and computed rating scale values were 0.83/0.78 

(MTA-Left), 0.83/0.79 (MTA-Right), 0.64/0.64 (GCA) and 0.76/0.75 (Fazekas) in ADC/PredictND 

cohorts.  When performance in differential diagnostics was studied for the main types of dementia, 

the highest balanced accuracy, 0.75-0.86, was observed for separating different dementias from 

cognitively normal subjects using computed GCA. The lowest accuracy of about 0.5 for all the visual 

and computed scales was observed for the differentiation between Alzheimer’s disease and 

frontotemporal lobar degeneration. Computed scales produced higher balanced accuracies than visual 

scales for MTA and GCA (statistically significant). 
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Conclusions. MTA, GCA and WMHs can be reliably estimated automatically helping to provide 

consistent imaging biomarkers for diagnosing cognitive disorders, even among less-experienced 

readers.  

Keywords 
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Key points 

Visual rating scales used in diagnostics of cognitive disorders can be estimated computationally 

from MRI images with intra-class correlations ranging from 0.64 (GCA) to 0.84 (MTA). 

Computed scales provided high diagnostic accuracy with single-subject data (area under the 

receiver operating curve range, 0.84-0.94). 

Abbreviations 

 

AD Alzheimer’s disease 

ADC Amsterdam dementia cohort 

ADNI Alzheimer’s disease neuroimaging initiative 

BACC balanced accuracy 

CN cognitively normal 

DLB dementia with Lewy bodies 

FLAIR fluid-attenuated inversion recovery 

FTLD frontotemporal lobar degeneration 

GCA global cortical atrophy 

ICC intra class correlations 

MTA medial temporal lobe atrophy on the left (MTA-L) and right (MTA-R) 

OTH other dementias but AD, VaD, FTD and, DLB 
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VaD vascular dementia 

VBM voxel-based morphometry 

WMH white matter hyperintensities  
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Introduction 

Clinical differential diagnosis of cognitive disorders is challenging. The most common underlying 

diseases include Alzheimer’s disease (AD), vascular dementia (VaD), dementia with Lewy bodies 

(DLB) and frontotemporal lobar degeneration (FTLD). Early and precise diagnosis is important both 

for therapeutical and research purposes (1-6).  

Magnetic resonance imaging (MRI) is a standard tool in clinical diagnostics of cognitive disorders, 

historically to rule out other pathologies, while current guidelines advise the use of MRI to find 

evidence for underlying patterns of neurodegeneration (1,4,5,6). Mediotemporal atrophy is often seen 

in typical AD, while young onset patients with an atypical presentation show more frequent parietal 

atrophy (7,8). In FTLD, atrophy is focused on frontal and temporal regions, but overall global atrophy 

is also present with increasing age. In VaD, white matter hyperintensities (WMHs) are essential (9-

11), however WMHs become more abundant with increasing age (12). DLB patients typically show 

little atrophy on MRI. These patterns of neurodegeneration are typically visually assessed. To make 

visual reads more uniform, visual rating scales are commonly used in the clinical and research 

settings, especially in Europe. A recent survey shows that about 75 % of radiologists use visual scales 

in Europe (13). Medial temporal lobe atrophy can be evaluated using a 5-point rating scale (MTA, 

range 0-4) (14) and global cortical atrophy (GCA) using a 4-point rating scale (range 0-3) (15). There 

is also a specific visual rating scale, Koedam score (range 0-3), for assessing posterior atrophy (8), 

useful for the atypical form of AD. WMHs can be rated using the Fazekas scale (range 0-3) (9-11). 

Table 1 provides details on these rating scales. 

Visual rating scales produce semi-quantitative information about the underlying pathology and 

consider more than just the volume of a specific region. However, they are coarse and biased by 

subjective visual interpretation. Computational imaging biomarkers, such as the hippocampal 

volume, aim to measure this pathology more precisely and objectively offering potential 

improvements. Transition from visual rating scales to computational imaging biomarkers is not, 
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however, straightforward in clinical practice as different specialists need to learn interpret such new 

imaging biomarkers. The purpose of this study is to overcome this challenge making interpretation 

easier: images are quantified using computational imaging biomarkers, but the results are represented 

in the scales that specialists are familiar with.   

Our first objective is to study whether visual MRI rating scales used in diagnostics of cognitive 

disorders can be estimated reliably based on a combination of imaging biomarkers. Our second 

objective is to compare visual ratings with their computed counterparts in separating dementias. Our 

approach tries to preserve the benefits of quantitative MRI but simultaneously use clinically familiar 

measures. Computed rating scales may improve underreporting of visual rating scales observed in 

clinical practice (16) and enable more uniform high-quality reporting even for less experienced 

readers. These challenges of visual rating are also reflected in (13): 32 % of responders among 

radiologists reported that they are not fully confident in using visual rating scales in the workup for 

cognitive disorders. Our hypothesis is that MTA, GCA and Fazekas can be estimated automatically 

providing useful information for helping in consistent diagnosing of cognitive disorders.     
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Materials and methods 

The study has been executed in accordance with the principles of the Declaration of Helsinki. 

Written informed consent was obtained from all participants.  

Subjects 

Cohorts. We included subjects from three independent cohorts: 1) Amsterdam dementia cohort 

(ADC) was used for developing the model. MRI images of 513 subjects were  acquired between 

2004-2014 (17). 2) PredictND cohort (www.predictnd.eu) was used for external validation. MRI 

images of 672 subjects were included from four memory clinics and acquired between 2015-2016. 3) 

ADNI cohort was used for external validation. MRI images of 752 subjects were obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI, www.adni-info.org). 

Clinical workup. From ADC and PredictND, we included subjects from six diagnostic groups: AD, 

FTLD, DLB, VaD, mild cognitive impairment (MCI) and subjective cognitive decline which 

represented cognitively normal (CN) subjects (Table 2). From ADNI, we included AD and CN cases 

from ADNI-1 and ADNI-2 (Table 2). Probable AD was diagnosed using the NINS-ADRDA criteria; 

all patients also met the core clinical criteria of the NIA-AA for probable AD (1,18).  The Neary and 

Snowden criteria were used to diagnose FTLD (3). DLB was diagnosed using the McKeith criteria 

(2) and VaD using the NINDS-AIREN criteria (5). MCI was diagnosed using Petersen’s criteria and 

all patients fulfilled the core clinical criteria of the NIA-AA for MCI (19-20).  All clinical diagnoses 

were made using the standardized multi-disciplinary clinical workup of each clinic. 

Imaging data and visual ratings. The subjects were scanned using either a 1.5 or 3 T MRI, including 

a 3-dimensional T1-weighted gradient echo sequence and a fast fluid-attenuated inversion recovery 

(FLAIR) sequence. ADNI-1 did not contain FLAIR images. Images from >20 different scanner 

models were used (see more details in Supplement-1). The voxel size varied between 0.4-1.6 0.4-

1.6  0.5-2.2 mm in T1-images and 0.4-1.3 0.4-1.3  0.6-7.0 mm in FLAIR images. MTA was rated 

http://www.predictnd.eu/
http://www.adni-info.org/
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on coronal T1-weighted images both on the left (MTA-L) and right (MTA-R) sides (14), GCA on 

axial FLAIR images (15) and WMHs on axial FLAIR images (9-11). As part of standard work-up, 

all scans of ADC were rated by one of three neuroradiologists, each with >15 years of experience. 

All readers had gone through a training and were qualified if a weighted kappa of at least 0.80 for 

MTA, 0.60 for GCA and 0.70 for WMH was obtained (17). In PredictND, one of the clinics (C1) was 

the same as acquired ADC. In the three other clinics, one expert (C2: 8 years, C3: >15 years, C4: 5 

years of experience) rated all images. In ADNI, visual ratings were not available. All raters were blind 

to clinical diagnosis. 

Estimating visual rating scales using imaging biomarkers 

Volumes of brain structures were defined from T1 image segmentations produced by a multi-atlas 

segmentation algorithm (21-22). WMH segmentation method is described in (22-23). Segmentation 

methods were fully automatic. The volumes were normalized first for head size (24) and then for age 

and gender using the method proposed in (25). In addition to volumetry, voxel-based morphometry 

(VBM) (26) was used to compute gray matter concentrations. A gray matter concentration index was 

defined reflecting the share of gray matter in a certain region of interest compared with the share in 

CN subjects.  The imaging biomarkers used in this study were 1) volumes of hippocampus and 

inferior lateral ventricle and concentration index of hippocampal gray matter for estimating MTA 2) 

volume and concentration index of cortical gray matter for estimating GCA and 3) volumes of white 

matter hyperintensities and deep white matter hyperintensities for estimating Fazekas.  

Computed rating scales were estimated in four steps. 1) Visual rating scale values were first 

normalized to the same age (70 years) using a linear regression model defined for CN subjects. 2) A 

linear regression model was used to estimate an age-normalized visual rating scale value (dependent 

variable) from imaging biomarkers (independent variables). 3) As the relationship between visual 

rating scales and imaging biomarkers is not necessarily linear, the estimate was finetuned using a 

partially linear mapping: the median of the estimates (Step 2), defined for all subjects having a certain 
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visual rating scale value, was mapped to the median of age-normalized visual rating scale values from 

the same subjects (Step 1). The rating scale values for which only a few measurement values were 

available (MTA-L=4: 4 subjects, MTA-R=4: 9 subjects, GCA=3: 2 subjects), were excluded to avoid 

overfitting. 4) The estimate was restricted to the allowed value range of the particular visual scale but 

keeping the value still as a decimal number.  

The model producing the highest Pearson correlation coefficient was selected. Supplement-2 

describes the algorithm in detail.  

Statistical Analysis 

Area under the curve (AUC) and balanced accuracy (BACC), defined as average of sensitivity and 

specificity, were used to assess diagnostic accuracy. Original visual scores (not age-normalized) were 

used in validation if not explicitly stated otherwise. ADC was used to develop the regression model. 

For internal validation, cross-validation was used: 50 % of ADC subjects were randomly selected for 

defining the model and the cut-off value maximizing BACC, and the remaining 50 % was used for 

testing. To obtain more robust performance estimates for correlation and classification accuracy, the 

selection of the training and test sets was repeated 250 times, and an average was calculated. The 

independent PredictND and ADNI cohorts were used for external validation to study generalizability.  

Agreement between the visual and computed rating scale values was studied using intra class 

correlation (ICC) and Kendall W test as described in (7) and (27), respectively.    

Statistically significant differences between the groups were analyzed using Mann-Whitney U-test, 

Chi-squared test, Wilcoxon rank sum test where appropriate and Fisher r-to-z transformation (two-

tailed). The difference was considered statistically significant if p<0.05. The Matlab toolbox R2016a 

(The MathWorks Inc) was used to run the data analysis except for ICC for which SPSS version 22 

(IBM) was applied.   
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Results 

Estimating visual rating scale computationally 

Table 3 shows correlation coefficients between visual and computed rating scale values when 

different imaging biomarkers were used in the model. For MTA, the combination of the hippocampus 

and inferior lateral ventricle volumes produced the highest correlation. The concentration index of 

cortical gray matter had the highest correlation coefficient for GCA. The Fazekas score calculated 

from the volume of deep white matter hyperintensities had the highest correlation coefficient. The 

correlation coefficients calculated for PredictND remained corresponding to the values obtained for 

ADC: 0.83/0.78 for MTA-L, 0.83/0.80 for MTA-R, 0.64/0.64 for GCA and 0.76/0.75 for Fazekas in 

ADC/PredictND. The difference was statistically significant for MTA-L. 

Table 3 shows also how rating scales and different imaging biomarkers performed in classifying AD 

and CN subjects (MTA and GCA) and VaD and non-VaD subjects (Fazekas). For MTA and GCA, 

BACC was higher for the computed rating scale than for the visual rating scale or any other single 

imaging biomarker (statistically significant).  

Next, agreement between the visual and computational rating scales was studied in detail using data 

from all diagnostic groups. Figure 1 shows the Box and Whisker plots for the visual and computed 

ratings in the independent PredictND cohort. The results are presented for each of the four memory 

clinics (C1 is the same center as acquired ADC). The plots indicate that the computed rating scales 

generalize relatively well.  

The agreement was studied also quantitatively using ICC and Kendal W. ICC was 0.83/0.78 for 

MTA-L, 0.84/0.80 for MTA-R, 0.64/0.64 for GCA and 0.76/0.75 for Fazekas in ADC/PredictND. If 

computed scores were rounded to integers, ICC was on average 0.026 smaller. The Kendall W values 

were 0.89/0.88 for MTA-L, 0.88/0.89 for MTA-R, 0.82/0.82 for GCA and 0.84/0.82 for Fazekas 

using ADC/PredictND.  
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More validation results are presented in Supplement-3. 

Table 4 shows the computed rating scale models for MTA-L, MTA-R, GCA and Fazekas. The models 

presented have been defined without cross validation using the whole ADC. 

 

Visual and computational rating scales in differential diagnostics 

Figure 2 shows BACC for visual and computed MTA (Figure 2a and 2b), GCA (Figure 2c) and 

Fazekas (Figure 2d) in differential diagnostics of five etiologies (AD, FTLD, DLB, VaD and CN). 

When BACCs of all 10 disease pairs were compared in both cohorts (10 pairs and 2 cohorts giving 

20 accuracy estimates), computed scores provided on average higher accuracies for MTA-L, MTA-

R and GCA (statistically significant). For Fazekas, a difference was not found.  The highest accuracy 

was observed for detecting CN subjects from different dementias using computed GCA (0.75-0.86) 

while the accuracy was around 0.5 for all scales in AD vs. FTLD classification. 

 

For assessing the generalizability in diagnostics, Figure 3 presents ROC curves for the ADC, 

PredictND and ADNI cohorts. The results indicate that AUC was corresponding to the results 

obtained in ADC for AD-CN classification. For Fazekas, AUC was smaller in PredictND but a small 

number of VaD cases may partially explain the difference. 
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Discussion 

Visual rating scales are used commonly in the diagnostic process of cognitive disorders in Europe. In 

research, they have been used in numerous studies (28) and supported in different guidelines (6,29). 

In this work, we studied whether visual rating scales (MTA, GCA and Fazekas) can be estimated 

computationally. In addition, we compared the performance in differentiating the main types of 

dementia using visual ratings and their computed counterparts. The use of computed scales based on 

quantitative imaging biomarkers potentially helps reducing both intra- and inter-rater variability in 

image interpretation, especially for less experienced raters.   

The role of biomarkers is increasing in diagnosing cognitive disorders. For example, the hippocampus 

volume is a well-established imaging biomarker for Alzheimer’s disease. The interpretation of 

biomarkers is typically based on cut-off values. When using automated image quantification, the 

challenge is that results are not typically directly comparable between methods making the use of 

generic cut-offs difficult. Another challenge is how to interpret deviations of the patient value from 

the cut-off, i.e., assess the clinical meaning of the difference. Representing the values using 

standardized scales, such as MTA, could help in these both challenges. 

When estimating visual MTA, the highest correlations were obtained by combining the volumes of 

hippocampus and inferior lateral ventricle. For GCA, the concentration index of cortical gray matter 

was used to compute the rating scale value. The correlation coefficient between the visual and 

computed GCA was relatively small, only 0.64. The small number of grades (0-3) in the GCA scale 

explains partly the low correlation. Another potential reason can be the difficulty to evaluate the 

global cortical atrophy visually. The computed GCA produced good classification results, 

BACC=0.84, in separating CN subjects from AD subjects, while the value was 0.74 for the visual 

GCA.  

The computed rating scales were validated also in independent cohorts. Correlation coefficients 

remained at comparable values. In the PredictND cohort, images were rated at four memory clinics 
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inducing additional heterogeneity to the results and explaining partly the statistically significant 

difference in the left MTA. The classification performance was stable in all four cohorts except a 

small decrease of AUC was observed for Fazekas in PredictND.   

Agreement was assessed by comparing the ADC and PredictND results with ICC and Kendall W 

reference values from (7, 27). In (7), the average ICC was computed between four raters (N=80). 

They reported ICC 0.82 (0.76-0.88) for MTA-L and 0.79 (0.71-0.85) for MTA-R but GCA and 

Fazekas were not studied. The corresponding values observed in ADC/PredictND were 0.83/0.78 for 

MTA-L, 0.84/0.80 for MTA-R. In (27), Kendall W was used to measure inter-rater agreement for 

MTA, GCA and Fazekas. They reported values 0.82 for MTA-L, 0.83 for MTA-R, 0.84 for GCA and 

0.92 for Fazekas (N=30). Using ADC/PredictND, the corresponding values were 0.89/0.88 for MTA-

L, 0.88/0.89 for MTA-R, 0.82/0.82 for GCA and 0.84/0.82 for Fazekas. A part of the raters in (6, 26) 

were the same as in ADC and PredictND (C1). 

Rating scales were tested also in differential diagnostics. High performance was observed in 

separating cognitively normal subjects from four cognitive disorders, especially for computed GCA. 

Computed scales produced higher overall accuracy for MTA and GCA than visual scales. This may 

look unexpected as computed scales estimate visual scales. However, computed scales are in reality 

volumetry- and VBM-based imaging biomarkers which are just represented in the value range of 

visual scales. Computed scales preserve the benefits of imaging biomarkers for quantification but 

provide the benefits of standardized scales for interpretation. Differential diagnostics between AD 

and FTLD is a clinical challenge, but the performance of the scales was corresponding to guessing 

both in ADC and PredictND. Although MTA, GCA and Fazekas have been shown to be useful in 

diagnosing dementia subtypes (30), previous research indicate that MTA is not specific for AD (31), 

and both AD and FTLD patients have atrophy in the medial temporal lobe (32). Balanced accuracies 

of 0.77-0.80 have been reported for AD and FTLD classification when using results from the 

combination of six visual rating scales (7), from the cortical thickness of the left inferior parietal 
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region (33) and from the ratio of volumes at anterior and posterior brain regions (34). Out of six visual 

scales used in (7), MTA was found to be the best scale in 4/12 of different diagnostic group 

comparisons. MTA has been shown to have power also in discriminating also DLB and VaD from 

AD (BACC=0.93) (35). There are multiple studies showing a concordance or superiority of 

automated imaging biomarkers compared with visual rating scales (36-40). For improving the 

diagnostic accuracy further, a richer and more specific set of imaging biomarkers and their 

combinations could be used (34, 41).  

As visual scoring is not very time consuming, it is important that getting computed ratings is 

automated. Our current image quantification pipeline is fully automatic, and results are available 

about 30 minutes after image acquisition. 

When considering potential clinical use, two issues regarding the representation of computed rating 

scales need to be considered. First, they were normalized to correspond values at the age of 70 years 

while clinicians need to normalize age mentally when interpreting visual ratings. Although not 

consistent with visual ratings today, the use of normalized values might reduce ambiguity in 

interpreting the values. Second, computed ratings are represented by decimal numbers while few 

integer values are used in visual ratings. Decimal numbers provide potential benefits, such as ability 

to assess gradual changes in atrophy. One limitation of the study is that such benefits were not 

demonstrated. In future studies, a more detailed analysis on the accuracy and consistency of imaging 

biomarkers, e.g., sensitivity to signal-to-noise ratio, and their impact on rating scales is needed. 

Another limitation of this study was the small size of the groups with the most severe grades which 

affects the construction and validation of the model.  

In conclusion, differential diagnostics of cognitive disorders is challenging, and the use of quantitative 

MRI measures can help making image interpretation more objective and uniform. This study suggests 

that visual ratings scales can be estimated computationally in a reliable way, and these computational 

scales may improve performance in diagnostics compared with visual scales.  
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Figure legends 

 

Figure 1. Box and Whisker plots defined for computed MTA-L (A), MTA-R (B), GCA (C) and 

Fazekas (D) when defined separately for each of the four memory clinics (C1-C4) in the PredictND 

cohort. C1 (red) is the same center as acquired the data in the Amsterdam dementia cohort.  

Figure 2. Balanced accuracy (BACC) computed between all diagnostic classes using different 

visual (green bars) and computed (yellow bars) rating scales: MTA-L (A), MTA-R (B), GCA (C) 

and Fazekas (D). The left and right green (yellow) bars contain results from visual (computed) 

scales using the ADC and PredictND cohorts, respectively. Abbreviations used: MTA = medial 

temporal lobe atrophy, GCA = global cortical atrophy (prefix ‘c’ stands for ‘computed’), CN = 

cognitively normal, AD = Alzheimer’s disease, FTLD = frontotemporal lobar degeneration, DLB = 

dementia with Lewy bodies, VaD = vascular dementia, ADC = Amsterdam Dementia Cohort, PND 

= PredictND cohort. 

Figure 3. ROC curves for computed MTA-L (A), MTA-R (B), GCA (C) and Fazekas (D) rating 

scales using the ADC, PredictND, ADNI-1 and ADNI-2 cohorts. Area under the curve (AUC) of 

the computed scores were 0.88/0.90/0.88/0.91 for MTA-L, 0.88/0.89/0.86/0.90 for MTA-R, 

0.92/0.89/0.85/0.89 for GCA and 0.94/0.84/-/- for Fazekas in ADC/PredictND/ADNI-1/ADNI-2 

cohorts. 
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Table legends 

 

Table 1. Details on visual ratings scales used in this study: MTA, Koedam score, CGA and WMH 

measured by the Fazekas scale. Footnote: Abbreviations used: MTA = medial temporal lobe 

atrophy, GCA = global cortical atrophy, WMH = white matter hyperintensities. 

Table 2. Characteristics for the Amsterdam Dementia Cohort (ADC), PredictND cohort 

(PredictND) and ADNI (ADNI-1 and ADNI-2) cohorts. Footnote: Abbreviations used: CN = 

cognitively normal, AD = Alzheimer’s disease, FTLD = frontotemporal lobar degeneration, DLB = 

dementia with Lewy bodies, VaD = vascular dementia, MCI = mild cognitive impairment, OTH = 

other dementias, MMSE = mini-mental state examination. aStatistically significant difference as 

compared to CN. bStatistically significant difference as compared to AD. cStatistically significant 

difference as compared to FTLD. dStatistically significant difference as compared to DLB. 

eStatistically significant difference as compared to VaD. fStatistically significant difference as 

compared to MCI. gStatistically significant difference as compared to OTH. Bonferroni correction 

was used in statistical analysis.   

Table 3. Visual and computed rating scales using different imaging biomarkers in the Amsterdam 

dementia cohort (ADC). Correlations have been computed using data from all diagnostic groups. 

MTA and GCA classification results are computed between AD and CN groups and results for 

Fazekas between VaD and non-VaD. Footnote: Abbreviations used: L=left, R=right, MTA = 

medial temporal lobe atrophy, GCA = global cortical atrophy, VHC = volume of hippocampus, 

VILV = volume of inferior lateral ventricle, VCO = volume of cortical gray matter, CHC = 

concentration index of hippocampal gray matter, CCO = concentration index of cortical gray 

matter, VWMH = volume of white matter hyperintensities, VDWMH = volume of deep white 

matter hyperintensities, correlation = Pearson correlation coefficient, AUC = area under the curve, 
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BACC = balanced accuracy. *Difference statistically significant for correlation, AUC and BACC as 

compared to all other methods. 

Table 4. Equations for defining computed rating scales. Footnote: Abbreviations: L=left, R=right, 

MTA = medial temporal lobe atrophy, GCA = global cortical atrophy (prefix ‘c’ stands for 

‘computed’), VHC = volume of hippocampus, VILV = volume of inferior lateral ventricle, CCO = 

concentration index of cortical gray matter, VDWMH = volume of deep white matter 

hyperintensities 
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Tables 

 

Table 1.  

Details on visual ratings scales of MTA, Koedam score, CGA and WMH used in this study. 

MTA (14)   Koedam score (8)  

   

Scale rated on coronal T1 images:  Scale rated in sagittal and coronal T1 and  

0= normal  axial flair images: 

1= widened choroid fissure  0= no atrophy 

2= increase of widened fissure, widening 

temporal horn, opening of other sulci 

 1= mild atrophy, opening of sulci 

2= moderate atrophy, volume loss gyri 

3= pronounced volume loss of hippocampus  3= severe atrophy; knife blade 

4= end stage atrophy   

     

     

GCA (15)   WMH (9-11)  

    

Scale rated on axial flair images:  Scale rated on axial flair images: 

0= no atrophy  0= none or single (max 3) punctate lesions 

1= mild atrophy, opening of sulci  1= multiple (≥3) punctate lesions 

2= moderate atrophy, volume loss gyri  2= beginning confluent of lesions 

3= severe atrophy; knife blade  3= large confluent lesions 

     

Abbreviations used: MTA = medial temporal lobe atrophy, GCA = global cortical atrophy, WMH = 

white matter hyperintensities. 
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Table 2.  

Characteristics for the Amsterdam Dementia Cohort (ADC), PredictND cohort (PredictND) and 

ADNI (ADNI-1 and ADNI-2) cohorts. 

ADC All (n=513) CN (n=75) AD (n=223) FTLD (n=62) DLB (n=40) VaD (n=19) 

Age 65 ± 7 62 ± 7 b,e 66 ± 7 a,c 62 ± 6 b,e 67 ± 9  69 ± 6 a,c 

Females 226 (44%) 25 (33%) 120 (54%) d 27 (44%) d 4 (10%) b,c,f 7 (37%) 

MMSE 23 ± 5 28 ± 1 b,c,d,e,f 21 ± 5 a,c,f 24 ± 5 a,b,f 23 ± 4 a,f 23 ± 5 a 

1.5T/3T 114/399 14/61 53/170 16/46 10/30 4/15 

       

 MCI (n=94)     

Age 65 ± 7     

Females 43 (46%) d     

MMSE 26 ± 2 a,b,c,d     

1.5T/3T 17/77     

       
PredictND All (n=672) CN (n=227) AD (n=133) FTLD (n=25) DLB (n=21) VaD (n=19) 

Age 69 ± 10 64 ± 9 b,d,e,f,g 71 ± 9 a 65 ± 8 g 72 ± 7 a 74 ± 10 a 

Females 357 (53%) 144 (63%) d,f 82 (62%) d,f 12 (48%) 5 (24%) a,b 7 (39%) a,b 

MMSE 27 ± 3 29 ± 1 b,c,d,e,f,g 24 ± 3 a,f 24 ± 4 a,f 25 ± 3 a 24 ± 3 a,f 

1.5T/3T 227/445 100/127 35/98 6/19 3/18 2/17 

       

 MCI (n=131) OTH (n=116)     

Age 69 ± 8 a,g 73 ± 9 a,c,f     

Females 46 (35%) a,b 61 (53%)     

MMSE 27 ± 3 a,b,c,e,g 25 ± 4 a,f     

1.5T/3T 39/92 42/74     

       

ADNI-1 All (n=357) CN (n=169) AD (n=188)    

Age 76 ± 7 76 ± 5 75 ± 7    

Females 177 (50 %) 86 (51 %)  91 (48 %)    

MMSE 26 ± 3 29 ± 1 b 23 ± 2 a    

1.5T/3T 357/0 169/0 188/0    

       
ADNI-2 All (n=400) CN (n=257) AD (n=143)    

Age 73 ± 7 73 ± 6 b 75 ± 8 a 
   

Females 201 (50 %) 143 (56 %) b 58 (41 %) a 
   

MMSE 27 ± 3 29 ± 1 b 23 ± 2 a       

1.5T/3T 0/400 0/257 0/143    

 



25 
 

Abbreviations used: CN = cognitively normal, AD = Alzheimer’s disease, FTLD = frontotemporal 

lobar degeneration, DLB = dementia with Lewy bodies, VaD = vascular dementia, MCI = mild 

cognitive impairment, OTH = other dementias, MMSE = mini-mental state examination.  

 aStatistically significant difference as compared to CN. 

bStatistically significant difference as compared to AD. 

cStatistically significant difference as compared to FTLD. 

dStatistically significant difference as compared to DLB. 

eStatistically significant difference as compared to VaD. 

fStatistically significant difference as compared to MCI. 

gStatistically significant difference as compared to OTH. 

Bonferroni correction was used in statistical analysis.   
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Table 3.  

Visual and computed rating scales using different imaging biomarkers in the Amsterdam dementia 

cohort (ADC).  

 MTA-L VHC-L VILV-L CHC-L VHC&VILV-L 

correlation -  0.62±0.03  0.80±0.02  0.76±0.02  0.83±0.01*  

AUC 0.82±0.03  0.85±0.02  0.82±0.03  0.83±0.02  0.88±0.02*  

BACC 0.77±0.03  0.74±0.03  0.74±0.03  0.76±0.03  0.79±0.03* 

      
 MTA-R VHC-R VILV-R CHC-R VHC&VILV-R 

correlation -  0.55±0.03  0.83±0.02  0.76±0.02  0.83±0.02*  

AUC 0.79±0.03  0.84±0.02  0.82±0.03  0.83±0.02  0.88±0.02*  

BACC 0.72±0.03  0.78±0.03  0.73±0.03  0.77±0.03  0.81±0.03* 

      
 GCA VCO CCO   

correlation -  0.46±0.03  0.64±0.03*    

AUC 0.76±0.03  0.89±0.02  0.92±0.02*   

BACC 0.74±0.03  0.80±0.03  0.84±0.03*   

      
 Fazekas VWMH VDWMH  

 

correlation -  0.75±0.02  0.76±0.01*   
 

AUC 0.88±0.04  0.96±0.01*  0.94±0.02  
 

BACC 0.79±0.05  0.89±0.06* 0.85±0.06   
 

Note: MTA and GCA classification results are computed between AD and CN groups and results for 

Fazekas between VaD and non-VaD. Abbreviations used: L=left, R=right, MTA = medial temporal 

lobe atrophy, GCA = global cortical atrophy, VHC = volume of hippocampus, VILV = volume of 

inferior lateral ventricle, VCO = volume of cortical gray matter, CHC = concentration index of 

hippocampal gray matter, CCO = concentration index of cortical gray matter, VWMH = volume of 

white matter hyperintensities, VDWMH = volume of deep white matter hyperintensities, correlation 

= Pearson correlation coefficient, AUC = area under the curve, BACC = balanced accuracy.  

*Difference statistically significant for correlation, AUC and BACC as compared to all other 

methods. 
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Table 4.  

Equations for defining computed rating scales.  

Visual score Computed rating scale value* 
 y = 2.1 - 0.7·VHC + 0.9·VILV 

MTA-L cMTA-L = 1.6·y - 0.7, if y < 1.1  
cMTA-L = 1.7·y - 0.8, if y > 1.1 and y < 1.6  
cMTA-L = 1.4·y - 0.4, if y > 1.6 

 y = 1.4 - 0.4·VHC + 0.8·VILV 

MTA-R cMTA-R = 2.2·y - 1.2, if y < 1.0  
cMTA-R = 1.7·y - 0.6, if y > 1.0 and y < 1.6  
cMTA-R = 1.1·y + 0.3, if y > 1.6 

 y = 0.5 + 0.03·CCO 

GCA cGCA = 2.3·y - 1.3, if y < 1.0  
cGCA = 2.0·y - 1.0, if y > 1.0 

 y = 0.8 + 0.4·log(VDWMH) 

Fazekas cFazekas = 2.2·y - 1.3, if y < 1.1  
cFazekas = 1.5·y - 0.5, if y > 1.1 and y < 1.7 

  cFazekas = 1.8·y - 1.1, if y > 1.7 

* If needed, the final values of computed scores are cut to make them correspond the range of the 

visual rating scale value.  

Abbreviations: L=left, R=right, MTA = medial temporal lobe atrophy, GCA = global cortical 

atrophy (prefix ‘c’ stands for ‘computed’), VHC = volume of hippocampus, VILV = volume of 

inferior lateral ventricle, CCO = concentration index of cortical gray matter, VDWMH = volume of 

deep white matter hyperintensities 
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Figures 

 

Figure 1. Box and Whisker plots computed for cMTA-L (A), cMTA-R (B), cGCA (C) and 

cFazekas (D) when defined separately for each of the four memory clinics (C1-C4) in the 

PredictND cohort. C1 (red) is the same center as acquired the data in the Amsterdam dementia 

cohort.  
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Figure 2. Balanced accuracy (BACC) computed between all diagnostic classes using different 

visual (green bars) and computed (yellow bars) rating scales: MTA-L (A), MTA-R (B), GCA (C) 

and Fazekas (D). The left and right green (yellow) bars contain results from visual (computed) 

scales using the ADC and PredictND cohorts, respectively. Abbreviations used: MTA = medial 

temporal lobe atrophy, GCA = global cortical atrophy (prefix ‘c’ stands for ‘computed’), CN = 

cognitively normal, AD = Alzheimer’s disease, FTLD = frontotemporal lobar degeneration, DLB = 

dementia with Lewy bodies, VaD = vascular dementia, ADC = Amsterdam Dementia Cohort, PND 

= PredictND cohort. 
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Figure 3. ROC curves for computed MTA-L (A), MTA-R (B), GCA (C) and Fazekas (D) rating 

scales using the ADC, PredictND, ADNI-1 and ADNI-2 cohorts. Area under the curve (AUC) of 

the computed scores were 0.88/0.90/0.88/0.91 for MTA-L, 0.88/0.89/0.86/0.90 for MTA-R, 

0.92/0.89/0.85/0.89 for GCA and 0.94/0.84/-/- for Fazekas in ADC/PredictND/ADNI-1/ADNI-2 

cohorts. 

 


